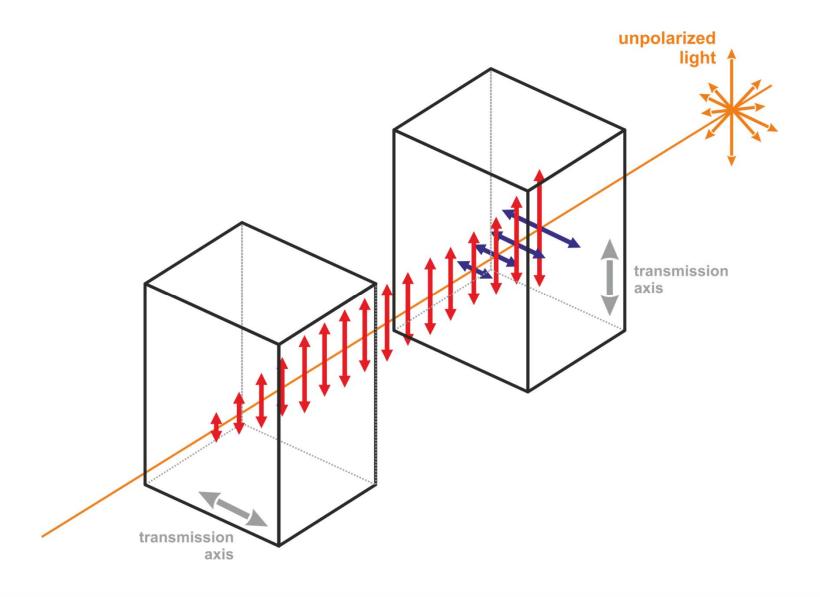


Chiroptical Spectroscopy Theory and Applications in Organic Chemistry

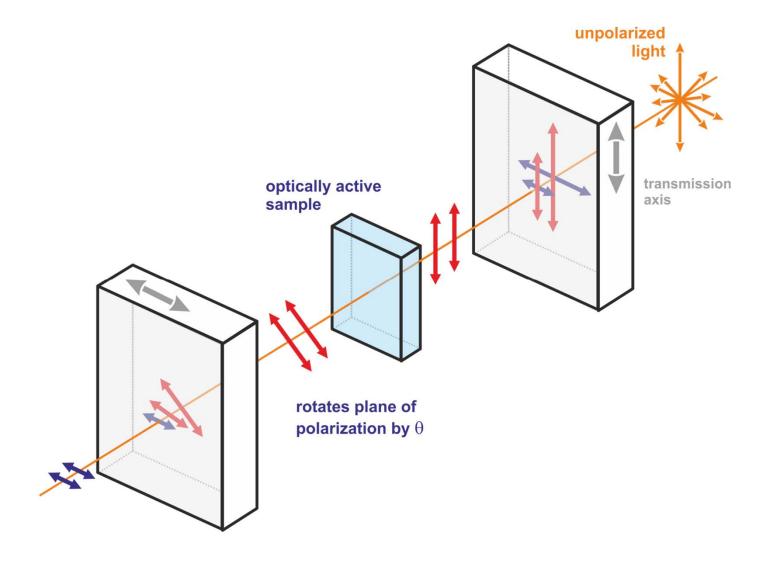
Lecture 3: (Crash course in) Theory of optical activity

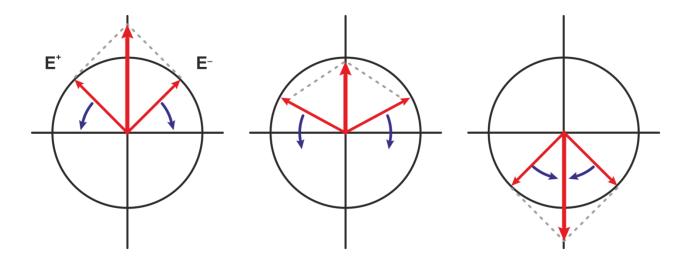
Masters Level Class (181 041)

Crossed polarizers



Crossed polarizers and optically active sample





Linear polarized light can be expressed as superposition

of left and right circular polarized light:

$$E = E^+ + E^-$$

with

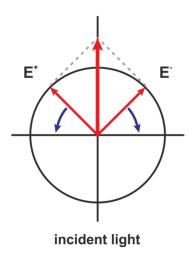
$$\mathbf{E}^{+} = E_{0} \cdot \mathbf{x} \cdot \cos \varphi_{+} + E_{0} \cdot \mathbf{y} \cdot \sin \varphi_{+}$$

$$\mathbf{E}^{-} = E_{0} \cdot \mathbf{x} \cdot \cos \varphi_{-} - E_{0} \cdot \mathbf{y} \cdot \sin \varphi_{-}$$

respectively

$$\mathbf{E}^{\pm} = E_0 \cdot \mathbf{x} \cdot \cos \varphi_{\pm} \pm E_0 \cdot \mathbf{y} \cdot \sin \varphi_{\pm}$$

x, y: unit vectors perpendicular to propagation direction



$$E = E^+ + E^-$$
 with

$$\mathbf{E}^{\pm} = E_0 \cdot \mathbf{x} \cdot \cos \varphi_{\pm} \pm E_0 \cdot \mathbf{y} \cdot \sin \varphi_{\pm}$$

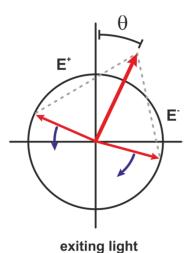
Taking into account that LCP and RCP light can

have different velocities in a medium:

$$n_{\pm} = \frac{c}{v_{\pm}}$$

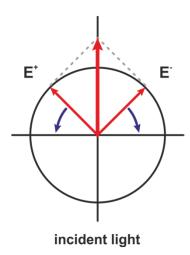
$$\varphi_{\pm} = \omega t - \frac{2\pi z}{\lambda_{\pm}}$$

$$\varphi_{\pm} = \omega t - \frac{2\pi z}{\lambda_{\pm}} \qquad \lambda_{\pm} = \frac{v_{\pm}}{f} = \frac{c}{n_{\pm} \cdot f}$$



Because $\omega = 2\pi f$, we can rewrite the equation:

$$\varphi_{\pm} = \varphi \mp \frac{\omega t \,\Delta n}{2c} \quad \begin{cases} \varphi = \omega t \, - n\omega z/c \\ n = \frac{1}{2}(n_+ + n_-) \\ \Delta n = n_+ - n_- \end{cases}$$



If medium is not circularly birefringant (optically active), then $\Delta n=0$ and

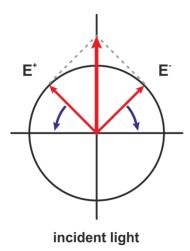
$$\mathbf{E}^{\pm} = E_0 \cdot \mathbf{x} \cdot \cos \varphi \pm E_0 \cdot \mathbf{y} \cdot \sin \varphi$$

Hence, the superposition is

$$\mathbf{E} = \mathbf{E}^+ + \mathbf{E}^- = 2E_0 \cdot \mathbf{x} \cdot \cos \varphi$$

exiting light

... i.e. it still oscillates in the plane of the direction of propagation and the unit vector \mathbf{x} .

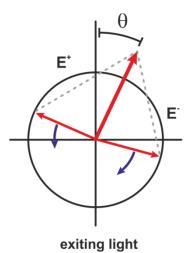


If the medium shows circular birefringence, we have

$$\mathbf{E}^{\pm} = E_0 \cdot \mathbf{x} \cdot \cos \varphi_{\pm} \pm E_0 \cdot \mathbf{y} \cdot \sin \varphi_{\pm}$$

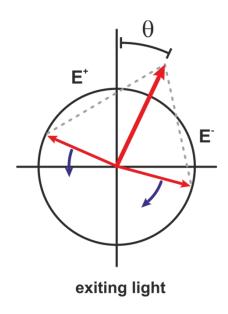
and the superposition becomes

$$\mathbf{E} = \mathbf{E}^+ + \mathbf{E}^- = E_0 \cdot \{(\cos \varphi_+ + \cos \varphi_-)\mathbf{x} + (\sin \varphi_+ - \sin \varphi_-)\mathbf{y}\}$$



After some rearrangements, we get

$$\mathbf{E} = 2E_0 \left\{ \mathbf{x} \cos \left(\frac{\mathbf{z} \,\omega \,\Delta n}{2c} \right) - \mathbf{y} \sin \left(\frac{\mathbf{z} \,\omega \,\Delta n}{2c} \right) \right\} \cos \varphi$$



The exiting ray is still linearly polarized, but its plane is now rotated by the angle θ :

$$\theta = \frac{z \omega \Delta n}{2c}$$

Consequently, we have a *dextrorotatory* sample if $n_+ > n_-$ and a *levorotatory* sample if $n_- > n_+$

How does the refractive index depend on a molecular properties?

From Maxwell equations, we find a relationship with the relative permittivity ε_r , aka the dielectric constant:

$$n = \left(\frac{\varepsilon}{\varepsilon_0}\right)^{\frac{1}{2}} = \varepsilon_r^{\frac{1}{2}}$$

Relative permittivity ϵ_r directly relates to electric susceptibility χ_e , which measures how easily a dielectric is polarized in response to an electic field:

$$\chi_e = \varepsilon_r - 1$$

Ok, then:

How does the dielectric constant depend on molecular properties?

For non-polar molecules in a static electric field,

it can be shown that

$$\varepsilon_r = \frac{1 + 2\alpha \mathcal{N}/(3\varepsilon_0)}{1 - \alpha \mathcal{N}/(3\varepsilon_0)}$$

polarizability α

$$\alpha = \frac{2}{3} \sum_{n \neq 0} \frac{\hat{\mu}_{0n} \cdot \hat{\mu}_{n0}}{E_n^0 - E_0^0}$$

with $\mathcal{N} = N/V$

How does the refractive index depend on a molecular properties?

From Maxwell equations, we find a relationship with the relative permittivity ε_r , aka the dielectric constant:

$$n = \left(\frac{\varepsilon}{\varepsilon_0}\right)^{\frac{1}{2}} = \varepsilon_r^{\frac{1}{2}} = \left(\frac{1 + 2\alpha \mathcal{N}/(3\varepsilon_0)}{1 - \alpha \mathcal{N}/(3\varepsilon_0)}\right)^{\frac{1}{2}} \approx 1 + \frac{\mathcal{N}\alpha}{2\varepsilon_0}$$

But the polarizability is not chiral!?

We made a mistake when deriving ε_r from the polarizability $\alpha!$

We assumed

$$P = \alpha \mathcal{N} E$$
 polarizability electric field

This is fully correct if there is a constant electric field.

Contribution of the magnetic field

Mistake: We ignored the contribution of the magnetic field to the polarization!

Rewriting our definition of polarization as

$$\mathbf{P} = \alpha \mathcal{N} \mathbf{E} - \beta \mathcal{N} \dot{\mathbf{B}}$$

with β being another molecular characteristic and not to be mixed up with the hyperpolarizability!



The problem of static polarization

From this definition of the polarization **P**, we get after solving a few equations again

$$n_{\pm} = 1 + \frac{\mathcal{N}\alpha}{2\varepsilon_0} \pm \frac{\mathcal{N}\omega\beta}{2c\varepsilon_0}$$

and thus the difference of the refractive indices becomes

$$\Delta n = \frac{\mathcal{N}\omega\beta}{c\varepsilon_0}$$

For the optical rotation angle, it follows that after passing through a sample of length I, and taking into account that $\varepsilon_0 \mu_v = c^2$ with μ_v being the vacuum permeability:

$$\Delta\theta = \frac{z \omega \Delta n}{2c} = \frac{\mathcal{N}l\omega^2\beta}{2c^2\varepsilon_0} = \frac{1}{2}\mathcal{N}l \,\mu_v\omega^2\beta$$

Polarization and quantum mechanics

Polarization **P** = dipole moment density

$$P = \langle \mu \rangle \cdot \frac{N}{V} = \langle \mu \rangle \cdot \mathcal{N}$$

 \triangleright Quantum mechanical calculation of the induced average dipole moment $\langle \mu \rangle$ should lead to expression for β!

Schrödinger equation

The time-<u>in</u>dependent Schrödinger equation

$$\widehat{H}\psi(\vec{\tau}) = E\psi(\vec{\tau})$$

while the full wavefunction has the form

$$\Psi(t,\vec{\tau}) = \psi(\vec{\tau}) \cdot e^{-iEt/\hbar}$$

It gives us access to observables by evaluating the observables' expectation value

$$\langle \Omega \rangle = \int \Psi^* \widehat{\Omega} \Psi \, d\tau = \langle \Psi | \widehat{\Omega} | \Psi \rangle$$

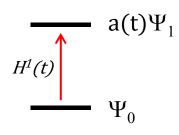
The basic idea of perturbation theory

In perturbation theory, we define a (time-dependent) perturbation in the Hamilton operator:

$$\widehat{H}(t) = \widehat{H}^0 + \widehat{H}^1(t)$$

e.g. perturbation by electric field

$$\widehat{H}^1(t) = -2\mu_x E_x \cos \omega t$$



In presence of a perturbation, the wavefunction is a linear combination of states:

$$\Psi(t) = \psi_0^0 \cdot e^{\left(-\frac{iE_0t}{\hbar}\right)} + \sum_{n \neq 0} a_n(t) \cdot \psi_n^0 \cdot e^{\left(-\frac{iE_nt}{\hbar}\right)}$$

For $a_n(t)$ it can be shown that

$$a_n(t) = \frac{1}{i\hbar} \int_0^t \widehat{H}_{n0}^1(t) \cdot e^{i\omega_{n0}t} dt$$

with
$$\hbar \omega_{n0} = E_n - E_0$$

Evaluating $\langle \mu \rangle$

The expectation value for the average dipole moment (its z-component) is

$$\langle \mu_z \rangle = \langle \Psi | \widehat{\mu_z} | \Psi \rangle$$

Taking into account that Ψ is a perturbed wavefunction with ground state $|0\rangle$ and perturbed states $|n\rangle$, we get

$$\langle \mu_z \rangle = \langle 0 | \widehat{\mu_z} | 0 \rangle + \sum_{n \neq 0} \left\{ \langle 0 | \widehat{\mu_z} | n \rangle \cdot a_n(t) \cdot e^{-i\omega_{n0}t} + \langle n | \widehat{\mu_z} | 0 \rangle \cdot a_n^*(t) \cdot e^{i\omega_{n0}t} \right\}$$

$$= \mu_{0z} + \sum_{n \neq 0} \{ \mu_{z,0n} \cdot a_n(t) \cdot e^{-i\omega_{n0}t} + \mu_{z,n0} \cdot a_n^*(t) \cdot e^{i\omega_{n0}t} \}$$

In our case, the perturbation to the Hamiltonian is

$$H^1(t) = -\hat{\mu} \cdot \mathbf{E} - \widehat{m} \cdot \mathbf{B}$$

with

electric dipole moment operator

 $\hat{\pmb{\mu}}$: electric dipole moment operator $\hat{\pmb{m}} = \gamma_e \hat{\pmb{l}} = \gamma_e (\pmb{r} \times \hat{p})$: magnetic dipole moment operator

electric field **E**:

magnetic field **B**:

More precisely, we also need to take into account the circular polarization states of the electric and magnetic field:

$$H^1_+(t) = -\hat{\mu} \cdot \mathbf{E}^{\pm} - \widehat{m} \cdot \mathbf{B}^{\pm}$$

with

$$E^{\pm}(t) = E(x \cdot \cos \omega t \pm y \cdot \sin \omega t)$$
 and $B^{\pm}(t) = B(\pm x \cdot \cos \omega t - y \cdot \sin \omega t)$

$$\mathbf{E}^{\pm}(t) = E(\mathbf{x} \cdot \cos \omega t \pm \mathbf{y} \cdot \sin \omega t)$$

$$\mathbf{B}^{\pm}(t) = B(\pm \mathbf{x} \cdot \cos \omega t - \mathbf{y} \cdot \sin \omega t)$$

$$H_{\pm}^{1}(t) = -\hat{\mu} \cdot \mathbf{E}^{\pm} - \hat{m} \cdot \mathbf{B}^{\pm}$$
$$= -\hat{\mu} \cdot E(\mathbf{x} \cdot \cos \omega t \pm \mathbf{y} \cdot \sin \omega t) - \hat{m} \cdot B(\pm \mathbf{x} \cdot \cos \omega t - \mathbf{y} \cdot \sin \omega t)$$

As $\mu_x = \hat{\mu} \cdot x$ and $m_x = \hat{m} \cdot x$

$$= -E(\mu_x \cdot \cos \omega t \pm \mu_y \sin \omega t) - B(\pm m_x \cos \omega t - m_y \sin \omega t)$$

$$\cos \alpha = \frac{1}{2} \left(e^{i\alpha} + e^{-i\alpha} \right)$$

$$\cos \alpha = \frac{1}{2} (e^{i\alpha} + e^{-i\alpha})$$
 $\sin \alpha = -\frac{i}{2} (e^{i\alpha} - e^{-i\alpha})$

$$= -\frac{1}{2}E\left(\mu_x \cdot \left(e^{i\omega t} + e^{-i\omega t}\right) \mp i\mu_y \left(e^{i\omega t} - e^{-i\omega t}\right)\right)$$

$$-\frac{1}{2}B\left(\mp m_{\chi}\cdot\left(e^{i\omega t}+e^{-i\omega t}\right)-m_{\chi}\left(e^{i\omega t}-e^{-i\omega t}\right)\right)$$

Based on this perturbation Hamiltonian, the coefficients of the perturbed wavefunctions can be determined:

$$a_n(t) = \frac{1}{i\hbar} \int_0^t \widehat{H}_{\pm,n0}^1(t) \cdot e^{i\omega_{n0}t} dt$$

with

$$\widehat{H}_{\pm,n0}^{1}(t) = -\frac{1}{2}E\left(\mu_{x}\cdot\left(e^{i\omega t} + e^{-i\omega t}\right) \mp i\mu_{y}\left(e^{i\omega t} - e^{-i\omega t}\right)\right)$$
$$-\frac{1}{2}B\left(\mp m_{x}\cdot\left(e^{i\omega t} + e^{-i\omega t}\right) - m_{y}\left(e^{i\omega t} - e^{-i\omega t}\right)\right)$$

Then, the induced electric dipole moment is the expectation value of the operator using the perturbed wavefunctions:

$$\langle \mu^{\pm} \rangle = \langle \Psi^* | \widehat{\mu^{\pm}} | \Psi \rangle = \mu_0 + \sum_{n \neq 0} \mu_{0n} \cdot a_n^{\pm}(t) \cdot e^{-i\omega_{n0}t} + \mu_{n0} \cdot a_n^{\pm *}(t) \cdot e^{i\omega_{n0}t}$$

Solving the equation for the expectation value

$$\langle \mu^{\pm} \rangle = \langle \Psi^* | \widehat{\mu^{\pm}} | \Psi \rangle = \mu_0 + \sum_{n \neq 0} \mu_{0n} \cdot a_n^{\pm}(t) \cdot e^{-i\omega_{n0}t} + \mu_{n0} \cdot a_n^{\pm *}(t) \cdot e^{i\omega_{n0}t}$$

leads to the final expression

$$\left\langle \mu^{\pm} \right\rangle = \frac{2}{\hbar} \operatorname{Re} \left\{ \sum_{n \neq 0} \left(\frac{\omega_{n0}}{\omega_{n0}^2 - \omega^2} \right) \cdot \mu_{0n} \cdot \mu_{n0} \cdot \mathbf{E}^{\pm}(t) \right\} - \frac{2}{\hbar} \operatorname{Im} \left\{ \sum_{n \neq 0} \left(\frac{\omega_{n0}}{\omega_{n0}^2 - \omega^2} \right) \cdot \mu_{0n} \cdot m_{n0} \cdot \mathbf{E}^{\pm}(t) \right\}$$

Comparison with the definition of polarization in an electromagnetic field

$$\mathbf{P} = \alpha \mathcal{N} \mathbf{E} - \beta \mathcal{N} \dot{\mathbf{B}}$$

shows that

$$\beta = \frac{2}{\hbar} Im \sum_{n \neq 0} \frac{\mu_{0n} \cdot m_{n0}}{\omega_{n0}^2 - \omega^2}$$

The rotational strength

Taking the rotational average (β_{xx} , β_{yy} , β_{zz})

$$\beta = \frac{2}{3\hbar} Im \sum_{n \neq 0} \frac{\mu_{0n} \cdot m_{n0}}{\omega_{n0}^2 - \omega^2}$$

we get

The Rosenfeld equation

$$\Delta\theta = \frac{\mathcal{N}l\mu_v}{3\hbar} \sum_{n \neq 0} \frac{\omega^2 R_{n0}}{\omega_{n0}^2 - \omega^2}$$

rotational strength of transition n←0

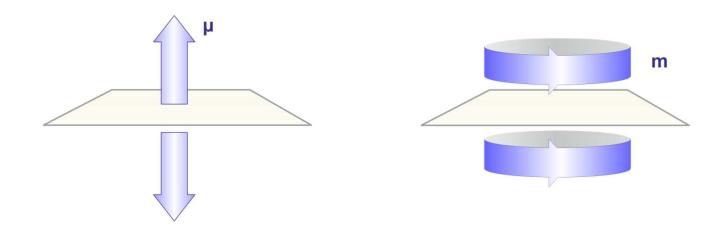
$$R_{n0} = Im\{\boldsymbol{\mu_{0n}} \cdot \boldsymbol{m_{n0}}\}$$

μ: electric dipole transition moment (EDTM) m: magnetic dipole transition moment (MDTM)

Symmetry properties of the rotational strength

With respect to reflection: EDTM transforms as translation

MDTM transforms as rotation



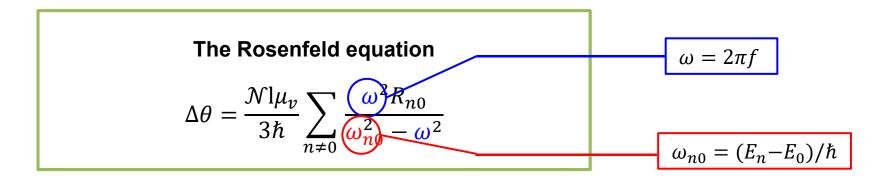
Requirement for property being achiral:

Sign of R must be conserved upon action of any symmetry element of the molecule

If a molecule has a mirror plane, reflection changes sign of EDTM but not of MDTM.

Consequence: Rotational strength changes sign $\rightarrow R = 0$

Optical rotatory dispersion (ORD)



At very high frequencies ($\omega^2 \gg \omega_{n0}^2$) and in the opposite case of $\omega^2 \ll \omega_{n0}^2$, the rotational angle is

$$\Delta\theta = 0$$

due to the sum rule

$$\sum_{n} (R_{n0}) = 0$$

OR is close to zero far away from absorption bands, but becomes very large when approaching them: $\omega_{n0}^2 - \omega^2 \rightarrow 0$

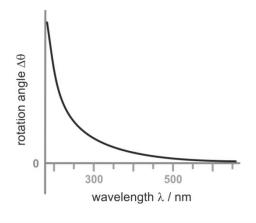
Optical rotatory dispersion (ORD)

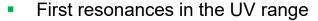
When $\omega_{n0}^2 - \omega^2 \to 0$, i.e. if the excitation frequency is close to an absorption band, the contribution of that particular transition dominates the OR value:

$$\Delta\theta = \frac{\mathcal{N}l\,\mu_{\nu}\omega^2 R_{10}}{3\hbar(\omega_{10}^2 - \omega^2)}$$

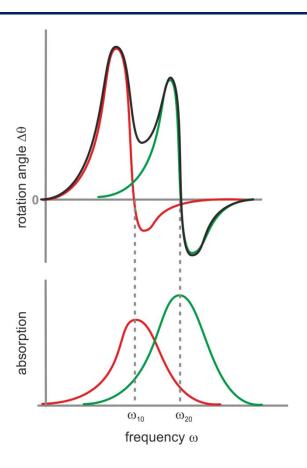
Observation of Cotton effect

"Normal" ORD curve:





 Appears monosignate in usual range of measurement



Outline of the lecture

	Dates	topics		
√	Monday	Introduction		
✓		Polarization of light		
✓	Tuesday	Theoretical basis of optical activity		
		Optical rotation		
Wednesday		Circular dichroism		
		Circular dichroism		
Thursday		Vibrational optical activity		
		Vibrational optical activity		
		_		
	Oct 22?	applications	your part	
	Oct 29?	applications		