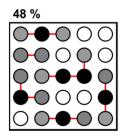
Introduction to Macromolecular Chemistry

aka polymer chemistry

Mondays, 8.15-9.45 am, NC 02/99

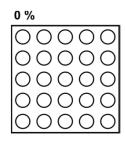
Polymerization reactions: Summary

STEP GROWTH REACTION

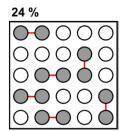

0% 00000 00000 00000 00000

polymerizable groupsMultiple reactive chain

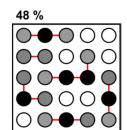
Monomer with >2


- Molecular weight increases slowly

ends



 High molecular weight only at high conversion


CHAIN GROWTH REACTION

 Monomer has one polymerizable group

 Active chain end, i.e. growth in one direction

Different mechanisms:

- Radical polymerization
- Cationic polymerization
- Anionic polymerization
- Coordinative polym.

Free radical polymerization

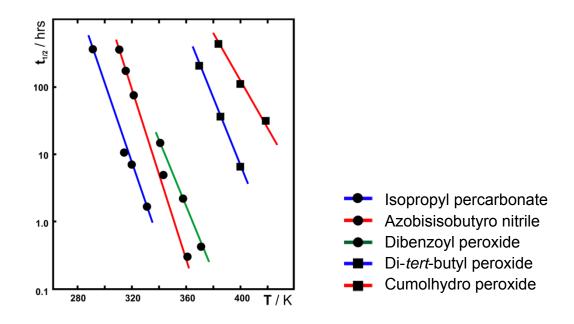
Three step reaction:

- Initiation
- Chain growth
- **Termination**

Typical examples

	monomer	polymer
Ethylene	//	\
Vinyl chlorid	CI	↓ Ci
Acrylo nitrile	CIN	CN
Vinyl acetate		
Methyl acrylic acid		

Free radical polymerization: Initiation


Photochemical activation of initiator

Thermal activation of initiator

Thermal initiation of polymerization

Free radical polymerization: Initiation

Important: Initiator radical lifetime at polymerization temperature

Free radical polymerization: Growths and termination

Chain growths

Termination mechanisms

a) Combination

Disproportionation

Free radical polymerization: Kinetics

Initiation: In-In 2 In^o

 $\overset{k_{st}}{
ightarrow}$ **Chain start:** In• + M In-M•

Initiation is much slower than chain start: $k_{st} \gg k_{in}$

 $-\frac{\mathrm{d}[\mathbf{InIn}]}{\mathrm{d}t} = k_{in}[\mathbf{InIn}]$ Reaction kinetics of 1st order in concentration of initiator:

$$\frac{\mathrm{d}[\mathbf{In}]}{\mathrm{d}t} = 2k_{in}[\mathbf{InIn}]$$

 $M_i^{\bullet} + M \xrightarrow{k_p}$ R-M_{i+1}• **Growth:**

 $-\frac{\mathrm{d}[\mathbf{M}]}{\mathrm{d}t} = k_p \cdot [\mathbf{M}] \cdot \sum [\mathbf{M_i}]$ For polymerization rate:

Free radical polymerization: Kinetics

Termination:
$$M_i^{\bullet} + M_j^{\bullet} \xrightarrow{k_{tc}} M_{(i+j)}$$
 for recombination

$$\stackrel{k_{td}}{\longrightarrow}$$
 $M_i + M_j$ for disproportioning

The rates of determination thus are:
$$-\frac{\mathrm{d}[\mathbf{M_{i^{'}}}]}{\mathrm{d}t} = 2k_{tc}\sum[\mathbf{M_{i^{'}}}][\mathbf{M_{j^{'}}}]$$

$$-\frac{\mathrm{d}[\mathbf{M_{i^{'}}}]}{\mathrm{d}t} = 2k_{td}\sum[\mathbf{M_{i^{'}}}][\mathbf{M_{j^{'}}}]$$

with
$$k_t = k_{tc} + k_{td}$$
 and assuming that M_i^{\bullet} and M_j^{\bullet} are indistinguishable it follows that
$$-\frac{\mathrm{d}[\mathbf{M_i^{\cdot}}]}{\mathrm{d}t} = 2k_t \big(\sum [\mathbf{M_i^{\cdot}}] \big)^2$$

Simplification: steady state in which number of radicals formed and consumed are equal

$$\frac{\mathrm{d}[\mathbf{In'}]}{\mathrm{d}t} = \frac{\mathrm{d}[\mathbf{M_{i'}}]}{\mathrm{d}t} \qquad \Rightarrow \quad 2k_{in}[\mathbf{InIn}] = 2k_{t}(\sum[\mathbf{M_{i'}}])^{2} \qquad \Rightarrow \quad \sum[\mathbf{M_{i'}}] = \sqrt{\frac{k_{in}[\mathbf{InIn}]}{k_{t}}}$$

Free radical polymerization: Kinetics

Simplification: steady state in which number of radicals formed and consumed are equal

$$\frac{\mathrm{d}[\mathbf{In'}]}{\mathrm{d}t} = \frac{\mathrm{d}[\mathbf{M_{i'}}]}{\mathrm{d}t} \quad \Rightarrow \quad 2k_{in}[\mathbf{In'}] = 2k_{t}(\sum[\mathbf{M_{i'}}])^{2} \qquad \Rightarrow \quad \sum[\mathbf{M_{i'}}] = \sqrt{\frac{k_{in}[\mathbf{InIn}]}{k_{t}}}$$

We can thus write for the rate of polymerization:

$$-\frac{\mathrm{d}[\mathbf{M}]}{\mathrm{d}t} = k_p \cdot [\mathbf{M}] \cdot \sum [\mathbf{M_i}] = \frac{k_p \sqrt{k_i}}{\sqrt{k_t}} \cdot [\mathbf{M}] \cdot [\mathbf{InIn}]^{1/2}$$

but, as k_i is small, [InIn] remains approximately constant during the reactions, so that the rate of polymerization becomes 1st order in [M]!

Free radical polymerization: Degree of polymerization

Kinetic chain length: How many monomers are added to each started radical chain before termination?:

$$\bar{v} = \frac{\text{Rate of monomer addition to chain}}{\text{Rate of new chain formation}} \quad \hat{v} = \frac{\text{growth rate}}{\text{initiator rate}} = \frac{-\frac{\text{d}[\mathbf{M}]}{\text{d}t}}{\frac{\text{d}[\mathbf{In}]}{\text{d}t}}$$

Substituting the equations from above gives in case of steady state:

$$\bar{v} = \frac{k_p[\mathbf{M}] \cdot \sum [\mathbf{M_i}]}{2k_i[\mathbf{InIn}]} = \frac{k_p[\mathbf{M}]}{2\sqrt{(k_i k_t[\mathbf{InIn}])}}$$

The degree of polymerization is linked with the kinetic chain length by

$$\overline{P}_n = a \cdot \overline{v}$$

where a is a factor which depends on the mechanisms of termination (a = 1 for disproportionation, a = 2 for recombination)

Free radical polymerization: Degree of polymerization

The degree of polymerization is linked with the kinetic chain length by

$$\overline{P}_n = a \cdot \overline{v}$$

where a is a factor which depends on the mechanisms of termination (a = 1 for disproportionation, a = 2 for recombination)

So we end up with

$$\bar{P}_n = a \cdot \frac{k_p[\mathbf{M}]}{2 \cdot \sqrt{(k_i k_t[\mathbf{InIn}])}}$$

For the number average molecular mass, $\overline{M}_n = M_0 \cdot \overline{P}_n$, and by simplifying $b = \frac{ak_pM_0}{2\sqrt{k_ik_t}} = constant$, we get

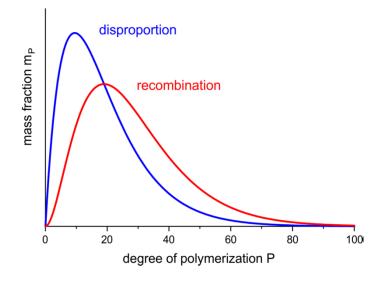
$$\overline{M}_n = \frac{b[\mathbf{M}]}{\sqrt{[\mathbf{InIn}]}}$$

Free radical polymerization: Mass distribution

Mass distribution of radical polymerizations depend on kinetic chain length:

$$\bar{v} = \frac{\text{Rate of monomer addition to chain}}{\text{Rate of new chain formation}} \quad \hat{v} = \frac{\text{growth rate}}{\text{initiator rate}}$$

and on the mechanism of termination – disproportion or recombination:


For disproportion:

$$m_P = \ln^2(1 - \frac{1}{\overline{v}}) \cdot P \cdot \left(1 - \frac{1}{\overline{v}}\right)^P$$

For recombination:

$$m_P = -\frac{1}{2}\ln^3(1 - \frac{1}{\bar{v}}) \cdot P^2 \cdot \left(1 - \frac{1}{\bar{v}}\right)^P$$

m_P represents mass fraction of polymers with certain degree of polymerization.

Free radical polymerization: Temperature effects

Temperature dependence can be described with Arrhenius equations:

$$k_i = A_i \cdot \exp\left(-\frac{E_i}{RT}\right)$$
 $k_p = A_p \cdot \exp\left(-\frac{E_p}{RT}\right)$ $k_t = A_t \cdot \exp\left(-\frac{E_t}{RT}\right)$

For the T-dependence of the rate of polymerization we get:

$$-\frac{\mathrm{d}[\mathbf{M}]}{\mathrm{d}t} = \frac{k_p \sqrt{k_i}}{\sqrt{k_t}} \cdot [\mathbf{M}] \cdot [\mathbf{InIn}]^{\frac{1}{2}} \quad \Rightarrow \quad -\frac{\mathrm{d}[\mathbf{M}]}{\mathrm{d}t} = \frac{A_p \sqrt{A_i}}{\sqrt{A_t}} \cdot \exp\left(\frac{\frac{E_t}{2} - \frac{E_i}{2} - E_p}{RT}\right) \cdot [\mathbf{M}] \cdot [\mathbf{InIn}]^{\frac{1}{2}}$$

Generally, the exponential term is negative >> reaction rate goes up, if T is raised.

But:

$$\overline{M}_n = \frac{ak_p M_0}{2\sqrt{k_i k_t}} \cdot \frac{[\mathbf{M}]}{\sqrt{[\mathbf{InIn}]}} \quad \Rightarrow \quad \overline{M}_n = \frac{aA_p M_0}{2\sqrt{A_i A_t}} \cdot \exp\left(\frac{E_t}{2} + \frac{E_i}{2} - E_p\right) \cdot \frac{[\mathbf{M}]}{\sqrt{[\mathbf{InIn}]}}$$

Here the exponential term is often positive >> average molecule weight decreases!

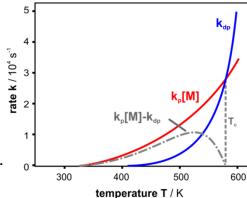
Free radical polymerization: Thermodynamic aspects

A reaction takes place, if $\Delta G = \Delta H - T\Delta S < 0$.

This is the case, if $\Delta H < 0$ and $\Delta S > 0$

 $\Delta H > 0$ and $T\Delta S > \Delta H$

 $\Delta H \ll 0$ even with $\Delta S < 0$

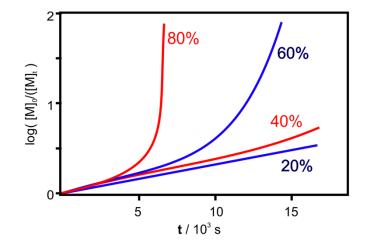

typical for polymerizations!

Ceiling-temperature T_c: $\Delta H = T_c \Delta S$

At T_c, polymerization and depolymerization are equally likely:

$$M_{i}^{\cdot} + M \xrightarrow{k_{p}} M_{i+1}^{\cdot}$$
 $M_{i+1}^{\cdot} \xrightarrow{k_{dp}} M_{i}^{\cdot} + M$

If T_c is reached, the reaction stops $(k_p[M] = k_{dp})$.


examples: MMA 493 K styrene 583 K

(Diagram redrawn based on Tieke, "Markomolekulare Chemie")

Free radical polymerization: Autoacceleration

For bulk polymerization or in concentrated solutions, strong deviations from steady state kinetics are possible:

- increased viscosity prevents termination mechanisms.
- termination rate decreases significantly
- decrease in reaction rate once glass temperature is reached
- >> gel effect (Trommsdorf Norrish effect)

$$-\frac{\mathrm{d}[\mathbf{M}]}{\mathrm{d}t} = \frac{k_p \sqrt{k_i}}{\sqrt{k_t}} \cdot [\mathbf{M}] \cdot [\mathbf{InIn}]^{\frac{1}{2}} \quad \Rightarrow \quad \ln\left(\frac{[M]_o}{[M]_t}\right) = \frac{k_p \sqrt{k_i}}{\sqrt{k_t}} \cdot t$$

Schematic change in $\log \left(\frac{[M]_o}{[M]_t}\right)$ with time at different concentrations of MMA in benzene: **A linear correlation is only observed for low concentrations.** (Diagram redrawn based on Tieke, "Markomolekulare Chemie")

Chain transfer: Transfer of radical from growing chain to other species,

from which the growth can continue > kind of termination reaction

(a) Chain transfer to monomer (≠ regular polymerization step)

Competition with polymerization:

$$P^{\bullet} + M \xrightarrow{k_{transfer}} P + M^{\bullet}$$
 transfer constant $C_M = k_{transfer}/k_{growth}$

Consequence of chain transfer: Autoinhibition

Allyl compounds, propene, isobutylene, vinyl ether cannot be polymerized via radical polymerization.

Formation of resonance stablized monomer radical is thermodynamically favored over polymer radical!

Monomer	C _M / 10 ⁴
Acrylamide	0.5
Acrylonitrile	0.26
Ethene	0.4 - 4.2
Styrene	0.3 - 0.6
Vinyl acetate	1.75 - 2.8
Vinyl chloride	10.8 – 16

(b) Chain transfer to polymer

Example: polyethylene:

Example: Poly vinylacetate

>>> Crosslinking of polymer chains

(c) Chain transfer to solvent

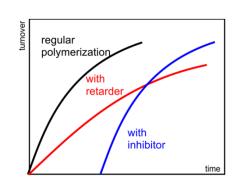
$$+ CCI_4 \rightarrow CI_3 + CI_3$$

Can be utilized for end group functionalization:

$$CI_3C$$
 $hydrolysis$
 $HOOC$
 NH_3
 NH_3
 NH_2

(d) Chain transfer to regulators

e.g. to mercaptanes


$$R'-S' + R-SH \longrightarrow R'-S'$$
 $R'-S' + R-SH \longrightarrow R'-S'$

... allows control of molecular mass

(e) Chain transfer to retarders and inhibitors

example: chinone as inhibitor

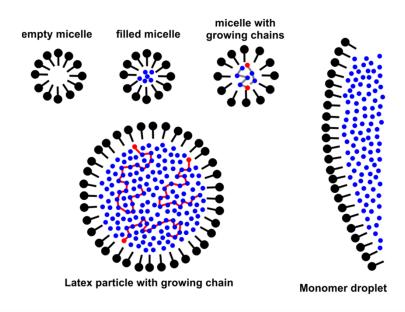
$$R + O \longrightarrow P + HO \longrightarrow O$$
 and/or $R \cap O$

Free radical polymerization: Industrially relevant polymers and processes

Emulsion polymerization

An important process for polyacrylates, poly(vinvyl chloride), poly(vinyl acetate)

Advantages over homogeneous (bulk) polymerization:


- No heat formation (respectively good discipation)
- No increase in viscosity
- No organic solvents

Reaction mixture:

Monomers, emulsifier, water, water-soluble initiator

Polymerization almost exclusively in the micelles, new monomer molecules are provided from droplets

Technically relevant for instance for wall paint

Free radical polymerization: Industrially relevant polymers

Polystyrene (PS)

- Commerciallized by BASF in 1930s
- Polymerization either in
 - highly concentrated solution (5-25% ethylbenzene) with thermal initiation
 - Suspension with peroxid initiation
- In both cases, preparation of granules/pellets, which can be molten for further processing

Polyethylene (PE)

- High pressure PE = LDPE: commerciallized by ICI in 1939
- Radical polymerization in bulk at 1400-3500 bar, 130-330 °C
- Initiation: oxygen, organic peroxides
- Characteristic: short crosslinks (butyl/ethyl) through chain transfer

Free radical polymerization: Industrially relevant polymers

Polyvinylchloride (PVC)

- Commerciallized by IG Farben in 1931
- Polymerization either in suspension (75%), emulsion (15%), or bulk (10%)
- In each case, atactic polymers with short syndiotactic sequences; crystallinity of 3-10%
- Monomer with tendency for chain transfer, therefore polymerization at low temperatures

• Suspension polymerization: 10-200 μ m particles, \overline{M}_w between 30-130 kg/mol

Commerically relevant:

- Rigid PVC ("Hart-PVC"): T_m ~ 150-200°C, processed > 220°C
- Flexible PVC ("Weich-PVC"): up to 50% softener added (e.g. diisopropyl phthalate)

Both used for foils, flooring, cable insulation, tubing ...

Free radical polymerization: Industrially relevant polymers

Polymethylmethacrylate (PMMA)

- Radical polymerization in bulk, usually processed by molding
- Often preparation of prepolymer, polymerized up to 20%, then filled in form
- Shrinkage of ~ 20% during curing, therefore polymerization at lower temperatures
- Polymer is fully optically transparent (known usually as Plexiglas)

Polytetrafluoroethylene (PTFE)

- Commerciallized 1940 by DuPont
- Polymerized via emulsion or suspension polymerization in aqueous solution
- Initator: ammonium persulfate NaHSO₃ Cu²⁺ mixture
- Stabilizer: perfluoro octyl carboxylic acid
- Particles of 0.1-0.3 μm (emulsion) and 2-4mm (suspension)
- Processing: Sintering (compacting without melting) or coating with emulsion
- Crystallinity ~ 50-70%

Free radical polymerization: Crosslinked polymers

(a) Styrene-divinylbenzene resins

Further chemical modification leads to ion exchanger resins

(b) Bismaleimide resins

Easily prepared from bismaleimido diphenyl methane, but yielding very brittle networks

Free radical polymerization: Crosslinked polymers

(c) Bismaleimide resins

More flexible materials are obtained when monomer mixtures are used (example Kerimid®)

Kerimid is high performance thermosetting polymer for applications requiring exceptional thermal stability and performance properties like advanced composites, high-temperature electrical laminates and adhesives.