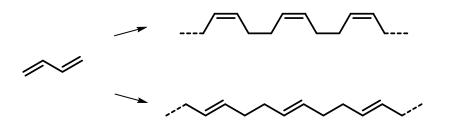
# Introduction to Macromolecular Chemistry


aka polymer chemistry

Mondays, 8.15-9.45 am, NC 02/99

### **Stereoisomerism**

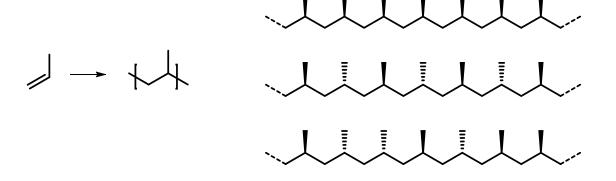
Similar to low-molecular weight molecules, polymers can feature stereoisomerism:

#### Cis/trans isomerism:



cis-1,4-polybutadiene amorphous, sticky

trans-1,4-polybutadiene semi-crystalline, high melting point


cis-1,4-polyisoprene (natural rubber) amorphous, sticky

trans-1,4-polybutadiene (Gutapercha) semi-crystalline, high melting point

### **Stereoisomerism**

Similar to low-molecular weight molecules, polymers can feature stereoisomerism:

Tacticity



**Isotactic polypropylene (***it***-PP)** Highly crystalline (T<sub>M</sub> ~ 160°C)

Syndiotactic polypropylene (st-PP)

Atactic polypropylene (at-PP) amorphous, sticky

Note: Although high stereoregularity, no optical activity (mirror plane due to long chain length)!

...but: it-PO does not have a mirror plane anymore:

$$CH_3 \longrightarrow OOOOO$$

## **Controlling tacticity: Radical polymerizations**

In free radical polymerization, monomer addition can take place from both sides of  $C_{\text{sp2}}$ :

Isotactic bond formation

Syndiotactic bond formation

For steric reasons, the *st*-bond formation is preferred.

Low temperatures further increase this preference.

## **Controlling tacticity: Cationic polymerizations**

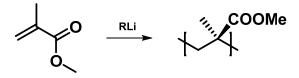
First example for stereospecific cationic polymerization:

- Steric hindrance of one side of C=C
- Cyclic transition state which promotes attack on C2

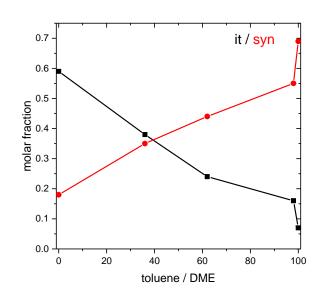
$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c}
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c}
& & & \\
& & & \\
& & & \\
\end{array}$$

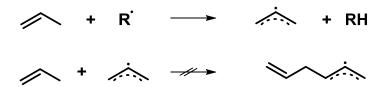

$$\begin{array}{c}
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c}
& & & \\
& & & \\
\end{array}$$


### **Controlling tacticity: Anionic polymerizations**

Factors determining the stereoregularity of anionic polymerizations:

- Polarity of the solvent (degree of dissociation of RLi)
- Low temperature facilitate regularity
- Initiator




Generally very similar to radical polymerization, i.e. syndiotactic addition preferred.



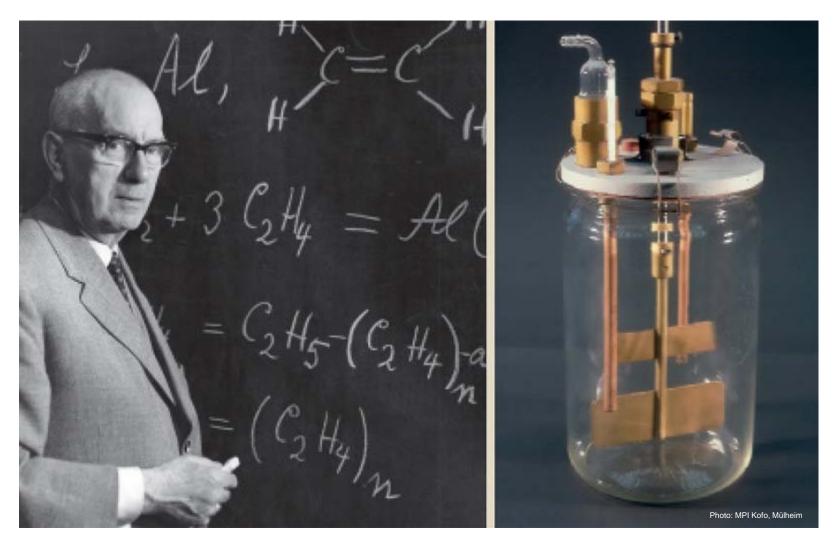
Example: PMMA (BuLi, 243K) in toluene/dimethoxyethan(DME) from Tieke, Makromolekulare Chemie, 2nd edition

Simple  $\alpha$ -olefines cannot be polymerized by free radical or anionic polymerizations due to formation of resonance stabilized radical:





**Karl Ziegler** (1898 – 1973)


In the early 1950s, Ziegler was interested in oligomerization of ethene by aluminium alkyles

... and found that trace amounts of nickel can prevent it (only dimerization):

>> The "nickel effect" (K. Fischer et al., Angew. Chem. Int. Ed. 12 (1973) 943-1026)

This made him curious about the role of transition metals on oligomerization, and finally lead to the discovery of a highly potent reaction system:

Mixture was capable of polymerizing ethene at room temperature and atmospheric pressure yielding polymers of high molecular weights which precipitated from solution (as opposed to radical polymerization which requires 300°C/ 2kbar)



Ziegler was so proud of his discovery, that he used to demostrate the experiment in a jar – just to show that it works at ambient pressure!

#### **Reaction mechanism**

Common starting materials for catalyst preparation:

- Al-organic compound: AlEt<sub>3</sub>, AlEt<sub>2</sub>Cl, Al(OEt)Et<sub>2</sub>, AlH(*i*C<sub>4</sub>H<sub>9</sub>)<sub>2</sub>
- Transition metal compound: TiCl<sub>4</sub>, TiCl<sub>3</sub>, Ti(OC<sub>4</sub>H<sub>9</sub>)<sub>2</sub>, VOCl<sub>3</sub>, VCl<sub>4</sub>, ZrCl<sub>4</sub>, NiCl<sub>2</sub>, WCl<sub>6</sub>, MnCl<sub>2</sub>
- Water-free non-polar solvent like hexane or benzene

Mixing of these compounds leads to complex activation reactions, with Ti<sup>IV</sup> being the most important species for polymerization:

```
TiCl₄ + AlEt₃ →
                                               EtTiCl<sub>3</sub>
                                                               + AIEt<sub>2</sub>CI
                                               EtTiCl<sub>3</sub>
TiCl₄
               + AlEt₂Cl →
                                                               + AIEtCl<sub>2</sub>
EtCl<sub>3</sub>
               + AIEt_3 \rightarrow
                                               Et<sub>2</sub>TiCl<sub>2</sub>
                                                              + AIEt<sub>2</sub>CI
                                                                                               heterogenous catalysis
EtTiCl<sub>3</sub>
                                               TiCl<sub>3</sub>
                                                               + Et*
                                                               + Et*
Et<sub>2</sub>TiCl<sub>2</sub>
                                               EtTiCl<sub>2</sub>
Et*
               + TiCl₄
                                               TiCl<sub>3</sub>
                                                               + EtCl
```

#### **Reaction mechanism**

■ Initiation TiCl<sub>4</sub> red. TiCl<sub>3</sub> AlEt<sub>3</sub> TiCl<sub>3</sub> free coordination site

Chain growth ( ➤ chain migration mechanism )

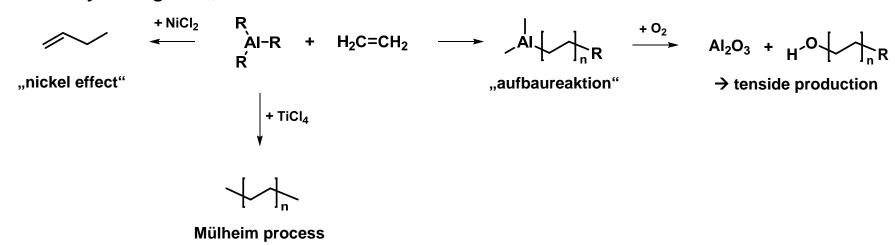
Termination resp. chain transfer



β-hydride elimination

β-hydride transfer

#### Molecular weight distribution


Like radical or ionic polymerization, M<sub>n</sub> depends on kinetic chain length:

- Increase in T, β-H elimination and transfer are becoming more favored
- ➤ Increase in T hence leads to decrease of M<sub>n</sub>

Addition of hydrogen allows control of molecular weight (hydrogenolysis):

$$Ti-CH_2^{\sim} + H_2 \longrightarrow Ti-H + H-CH_2^{\sim}$$
 $Ti-H + H_2C=CH_2 \longrightarrow Ti-CH_2CH_3$ 

#### **Summary of Ziegler's "Aufbaureaktionen"**





time for

**Giulio Natta** (1903-1973)

Why has it been overlooked by Ziegler?

HDPE is insoluble in reaction medium at-PP is soluble!

#### Homogeneous Ziegler-Natta catalysis

Most homogeneus catalyst are sandwich or half-sandwich complexes of Ti or Zr.



Aluminum co-catalyst: methyl aluminoxane (MAO, n~20)

$$AI(CH_3)_3 + H_2O \longrightarrow AI_O + 2CH_4$$

Mechanistic assumption: (Di)methylation of TM species followed by removal of chloride (methyl) anion.

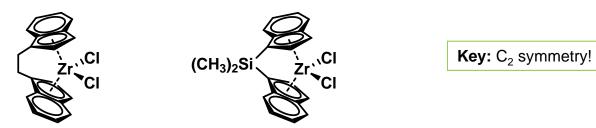
#### Homogeneous Ziegler-Natta catalysis

These soluble systems could be used to confirm the initially proposed mechanism:

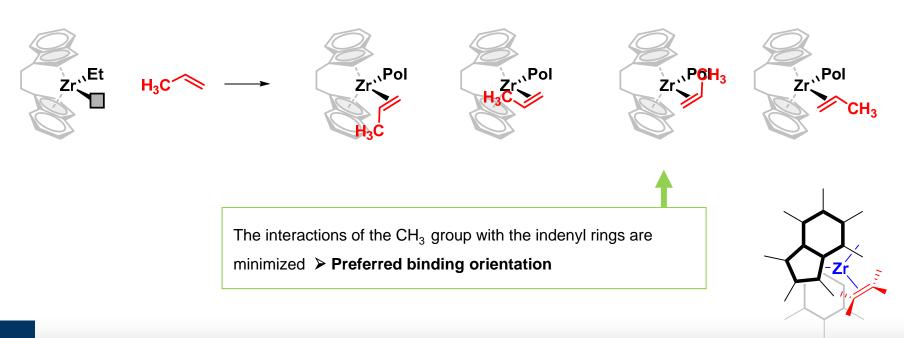
$$Cp_2Zr$$
 +  $H_3C-Al$   $\longrightarrow$   $Cp_2Zr$  +  $CI-Al$ 

$$Cp_{2}Zr \xrightarrow{CH_{3}} + -AI \xrightarrow{Cp_{2}Zr \xrightarrow{\delta+}} Cp_{2}Zr \xrightarrow{\delta+} Cp_{2}Zr \xrightarrow{\delta+} + CI-AI \xrightarrow{CI-AI}$$
Available for olefin addition

#### Stereoregulation in the polymerization of propene


Stereochemistry of the addition of a titanium alkyl compound to propene:

A stereoregular polymer is obtained if


- (A) The polymerization always takes place from the same side (re or si)
- (B) If the sides are alternated for each step

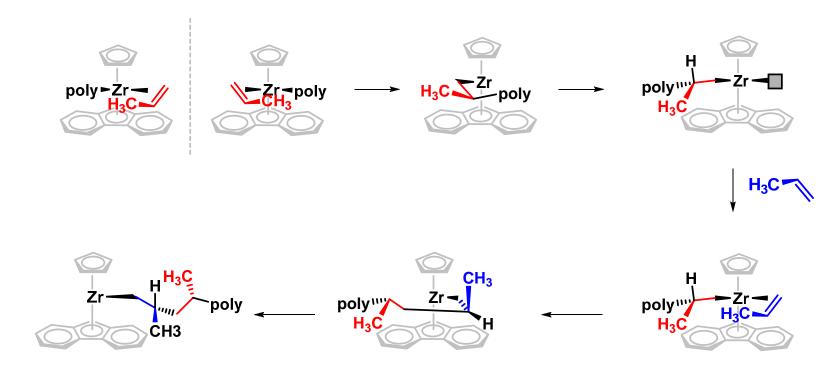
- → isotactic
- → syndiotactic

### **Catalysts for isotactic PP**



Isoselectivity achieved by selecting only specific binding orientations:




### **Catalysts for isotactic PP**

Step by step:

More details on the stereoregularity of the mechanism: Angermund et al., Chem Rev. 100 (2000) 1457-1470

### **Catalysts for syndiotactic PP**

While both binding position were identical in the C2-symmetric catalysts, syndiotactic catalysts need to feature enantiotop positions:



Olefin metathesis: Formal exchange of alkylidene groups between two olefins

$$[M] \stackrel{\text{H}}{\rightleftharpoons} + \cancel{\nearrow} = \frac{H_2C \stackrel{\text{CH}_2}{\rightleftharpoons}}{M \stackrel{\text{H}}{\rightleftharpoons}} + \frac{CH_2}{R} \stackrel{\text{CH}_2}{\rightleftharpoons} = \frac{CH_2}{M} + \frac{CH_2}{R}$$

Catalysts can be devided into three groups:

#### Homogeneous

Schrock / Grubbs

Ru: highest functional group tolerance

#### Heterogeneous

 $WO_3/AI_2O_3$  at 400°C or  $MoO_3/ZrO_2$  at RT)

#### **Immobilized**

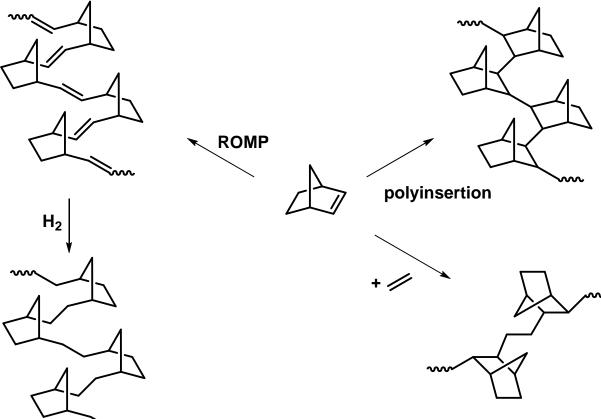
on polystyrene

Olefin metathesis: Formal exchange of alkylidene groups between two olefins

$$[M] \stackrel{H}{\rightleftharpoons} + /\!\!/ = \stackrel{H_2C \stackrel{CH_2}{\rightleftharpoons} CH_2}{\rightleftharpoons} \stackrel{H}{\rightleftharpoons} \stackrel{CH_2}{\rightleftharpoons} \stackrel{CH_2}{$$

How can metathesis be used in polymerization reactions?

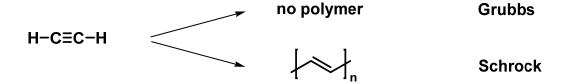
Ring opening metathesis (ROMP)


$$X \longrightarrow X \longrightarrow H_2C=CH_2$$

**Acyclic diene metathesis (ADMET)** 

### Important polymers from ring opening metathesis:




### Norbornene polymers:



**Applications** in rubber industry:

- anti-vibration (rail, building, industry)
- anti-impact (personal protective equipment, shoe parts, bumpers)
- grip improvement (toy tires, racing tires, transmission systems, transports systems for copiers, feeders, etc.)

### Special monomer: Acetylene



#### Poly(acetylene):

- C=C along backbone  $\rightarrow$  conjugated sp<sup>2</sup>- $\pi$  system
- Doping → electrically conductive
- Disadvantage: sensitive to oxidation, insoluble, not meltable

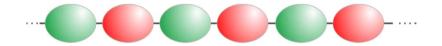
### Other interesting architectures are possible:

### Catalytic olefine polymerizations: polar comonomers

### **Olefin-CO co-polymerization**

#### Mechanistic insight:

$$\begin{pmatrix} L \\ Pd \\ D \end{pmatrix} \qquad \begin{pmatrix} L$$

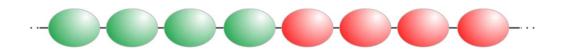

Binding Pd-CO not favorable, but incorporation of CO in polymer is fast. Binding of ethene favorable, but insertion is slow.

## Copolymers



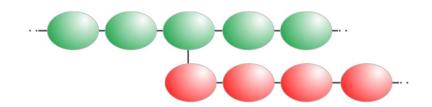
### alternating copolymer

poly(A-alt-B)




### **statistical copolymer** poly(A-stat-B)




## block copolymer

poly(A)-block-poly(B)



### graft copolymer

poly(B)-graft-poly(A)



### **Copolymers**



alternating copolymer

poly(A-alt-B)

via step growth reactions

**statistical copolymer** poly(A-stat-B)

via mixing two monomers

with same polymerizable group

**block copolymer** poly(A)-block-poly(B)

via living polymerization

graft copolymer

poly(B)-graft-poly(A)

via post-modification of an exististing polymer / macromonomer

### "Grafting onto" approach

Modification of an existing polymer by attaching another polymer to it

### "Grafting from" approach

Use of polymers with independent initiator group in the side chains

(A) Radical polymerization

$$+ \qquad \qquad \xrightarrow{\text{redox initiator}} \qquad \xrightarrow{\Lambda, \text{ hv, M}_2} \qquad \xrightarrow{\Lambda, \text{ hv, M}$$

### "Grafting from" approach

Use of polymers with independent initiator group in the side chains

### (B) Step growth reaction

Poly(carbonate)

### "Macromonomer" approach

Oligomers with unsaturated chain ends

- Base polymer accessible by radical, anionic or cationic polymerization
- Introduction of end group functionalisation by initiator, chain transfer or terminating reagent
- ... or by modification of chain end: